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MOTION FIELD AND OPTICAL FLOW: QUALITATIVE PROPERTIES

Alessandro Verri and Tomaso Poggio

ABSTRACT: In this paper we show that the optical flow. a 2-D field that
can be associated with the variation of the image brigh n« :s pattern. and the
2-D) motion field, the projection on the image plane oi the 3-1 velocity field
of a moving scene, are in general different. unless very special conditions are
satisfied. The optical flow. therefore. is ill-suited for computing structure
from motion and for reconstructing the 3-D velocity field. problems that
require an accurate estimate of the 2-1) motivn field. We then suggest a
different use of the optical flow. We argue that stable qualitative properties
of the 2-D motion field give useful information about the 3-D velocity field
and the 3-D structure of the scene. and that they can be usually obtained
from the optical flow. To support this approach we show how the (smoothed)
optical low and 2-D motion field. interpreted as vector fields tangent to flows
of planar dynamical systems. may have the same qualitative properties from

the point of view of the theory of structural stability of dvnamical systems.
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1. Introduction

A key task for many vision systems is to extract information from a sequence
of images. This information can be useful to solve important problems such
as recovering the 3-D velocity field, or segmenting the image into par.s cor-
responding to different moving objects, or reconstructing the 3-D structure
of surfaces. The recovery of the 2-D motion field, (that we define as the
projection on the image plane of the 3-D velocity field) is thought to be an
essential step in the solution of these problems. The data available, how-
ever, are temporal variations in the brightness pattern. These variations are
usually associated with a perceived motion field. called optical flow (Gibson,
1950; Fennema and Thompson, 1979; Horn and Schunck, 1981). In order
to recover the 2-D motion field, the assumption that the 2-I) motion field
and the optical flow coincide has often been made. It must be noted though,
that this assumption is clearly satisfied only in the case in which variations
in the brightness pattern correspond to features of the visible, 3-D surfaces.
In fact several authors have developed algorithms to reconstruct the 2-D) mo-
tion field from optical flow data defined only at locations of features in the
image (Hildreth, 1984a,b: Waxman, 1986). Examples in which this assump-
tion does not hold are known (Horn, 1986). but they have been regarded as
pathological cases. As a matter of fact, algorithms that deal with the recov-
ery of the 2-D motion field from dense optical low data have been proposed.
with the more or less explicit assumption that the two fields are the same

(Horn and Schunck. 1981: Nagel. 1984: Kanatani, 1985).

In this paper we show that the optical flow and the motion field are in
general different. unless very special conditions are satisfied. We explicitly
compute the difference between their normal components (the component

along the direction of the gradient) under broad assumptions. We show

T AN
Bd i) ! v

y ‘*":ﬁ.

SO




A S IR v & [P I WU U WL IR U YU DI * St 9.* @t A .6 9% 3 ,° LR AN K] 0 g4 s o4
- Y
A 1
3 ;:
@ that they are arbitrarily close where the image gradient is sufficiently strong. -
{

Hence. feature-based matching algorithms that rely on edges of various types

(including texture edges) are more appropriate than point-to-point ones to

solve problems that rely on accurate recovery of the 2-1) motion field. such M
as structure from motion. One may then ask, what is the optical flow for? In ::
the second part of the paper we suggest that meaningful information about .
the 3-D velocity field and the 3-D structure can be obtained from qualitative :
properties of the 2-D motion field. We then argue that this information can N
be retrieved directly from the optical flow or its normal components. We b0
describe a specific approach that exploits results from the theory of stability E
of dynamical systems. A more detailed analysis of this approach will be ‘\
presented in a forthcoming paper by V. Torre and coworkers. ﬁ
B2

The paper is divided in two parts. In the first, we define the problem é
“ and we state explicitly the assumptions that we have used. In particular, we e,
consider in detail how image irradiance can be related to scene radiance in
the case of a scene consisting of non-lambertian surfaces. We describe. then.
a method that allows us to show that the optical flow and the motion field are :’l
almost always different. We analytically compute the difference between the
ph

normal components of the two fields assumning. first. the lamhbertian model A
o

of reflectance and then a more realistic one for arbitrary rigid motion of A
A
a generic surface. We also calculate how this difference depends on the -
image gradient and the 3-D velocity of moving objects. In the second part r\
A

we show how both the optical flow and the motion field can be processed :
to become vector fields tangent to flows of dynamical systems. The optical !
flow then. can be considered as a perturbed motion field under the conditions E
determined in the first part. Results from the theory of stability of dynamical 'E'
~

svstems suggest that qualitative, stable properties of the motion field hold "
N | . "
e for the optical flow. We sketch some example of these properties and how .
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they can be used in a description of the 3-) velocity field. We finally discuss *@ "
briefly some connections with biological systems. B

P

r

»

’

)

-

2

2. Preliminaries <
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In this chapter we review the definitions of motion field and optical flow, and )\

.

. . -

we state the assumptions that we used throughout the paper. In particular, N

we consider in detail how image irradiance can be related to scene radiance )
a

in the case of a scene consisting of non-lambertian surfaces. :
)

=
o
. PR o

2.1. Definitions ®
S

N

-‘l
N

Let us define notations and summarize definitions that will be useful in what g
follows. For more details on the geometry of perspective projection see Ap- .
o

pendix Al. Throughout the following we will assume, if it is not otherwise o
o

. . . . <

stated, that any expression can be differentiated as many times as nedeed. A
Let -
f \ -
X, - - {x (x-n)n 2.1.1 N
4 f . X-n ( ( ) ) ( ) Y.
S

be the equation defining the projection of a generic point on the image plane. .
where x,, (,.y,..0) is the position vector of the projected point. x ":
(r.y.z) is the position vector of the point. n is the unit vector normal to E" :
.

. . . . . o
the image plane (projection plane) and f is the focal length (see Figure 1). %\
0

Notice that the origin O is on the image plane. the focus of projection F is SRS

«*, .

L G "

. . . R . '. -- '

located at (0.0. f).and fn - x is the vector pointing from F to the point. : s
o
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Figure 1. The geometry of perspective projection.

The motion field v, can be obtained differentiating (2.1.1) with respect
to the time. If v - dx/dt we have !
f v-n
v, : v v-njn - X - (x-njn 2.1.2
Notice that in (2.1.2) v, is given in terms of x and v, position and velocity

of the moving points in the scene. which are not known.

Let E - E(r,.y,.t) be the image irradiance, that is the intensity of
light at the point (r,.y,) of the image planc at the time f. 1f ¥ is the

gradient with respect to the image coordinates, then
dk Jk

. kv, : 2.1.3
i o V. E v, (2.1.3)
Now if
dFl
0 2.1.1
i ( )

't can be easily shown that the perspective projection of the 3-D velocity vector
is equal to the velocity of the projected point on the immage plane, since both the
vector are defined in terms of infinitesimal. This is not true for a generic, fintte

vector

)
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then, if 'V,E| =0
_OE/3t _V,E-v, (2.15)
VpEL LIVLE| o N
Therefore, if (2.1.4) holds, the projection of the motion field along the di- 5
rection of the gradient can be given in terms of derivatives of the image S
irradiance (which can be computed). In what follows, this component will
be called v, or the normal component; thus ‘:‘
v VS TE 216
‘V,.E V,E o
Equation (2.1.5) can be interpretated as an instance of the well-known E
aperture problem (Marr and Ullman, 1981: Horn and Schunck, 1981): that E.
is the information available at each point of a sequence of frames is only '
the component of the motion field along the direction of the image gradient. §
To recover a full and unique motion field. some other constraint is needed: :
Horn and Schunck {1981). for example. showed that there is only one 2- ;.
D field whose normal component coincides with (2.1.6) and which is the
smoothest of all possible ones. Examples for which (2.1.5) is not true are
well known (Horn and Schunck. 1981). Consider. for instance. a rotating \
sphere with no texture on it {r.e. with uniform albedo) under arbitrary. :f-_
fixed illumination. Since the image irradiance at each image location does :
not change with time, the left-hand side of (2.1.5) is identically equal to zero. -'
while the right-hand side is different from zero almost everywhere. Notice E::
that keeping the sphere fixed and moving the light source (2.1.5) is again ‘-
wrong. In this case. however. the left-hand-side is different from zero while 5’
v is zero everywhere. In both cases the perceived motion in the image is 'o:
different from the motion field. It is worthwhile. then, 1o introduce a new .:"
field. called the minimal optical flow. related to the perceived motion in the ';
image. and not necessarily equal to the normal component of the motion field. N
%
Notice that the perceived motion in the examples above agrees qualitatively '.2:
e
7
%

oy X WP P L '.-‘-r N N O N SO N -r,,_e' NS v s AT AT A A A T AT e T e AT e e
. b . o R . N 0 . L D »! . . B . - B a A 8 A L . £ o B R g 0 B R




L )

T8,

o

with the left-hand-side of (2.1.5). Indeed, the optical flow in the first case

is identically equal to zero. while in the second is different from zero almost
everywhere. Therefore let us define the normal component O of the optical
flow as: ¥
oL /ot V E
Op ~ o - (2.1.7)
L:vllb‘i i'vlrEj’
Hence. with respect to this definition, the minimal optical flow and the nor-

mal component of the motion field are always directed along the gradient

and they coincide if and only if (2.1.4) holds.

Remark: in the literature, it is usually assumed that (2.1.4) holds. As a
consequence, the normal components of the motion field and of the optical
flow are the same and the latter can be used as a constraint to recover the

2-D motion field.

2.2. Scene Radiance and Image Irradiance

Let us review briefly some definitions of photometry and make explicit the
constraints under which the image irradiance is related to the scene radiance.
The image irradiance E is the power per unit area of light at each point
(r,.y,) of the image plane: thus F E(r,.y,). The scene radiance L
is the power per unit area of light that can be thought emitted by each
point of a surface S in the scene in a particular direction.  This surface
can be fictitious, or it may be the actual radiating surface of a light source.
or the illuminated surface of a solid. The scene radiance can be thought
as a function of the point of the surface and of the direction in space. If
{a.b) are intrinsic coordinates of the surface and (o..4) polar coordinates
determininrg a direction in space with respect to the normal to the surface.
we can write [, I{a.b.o. 9}, Given the scene radiance it is possible, in

principle. to compute the expected image irradiance. For example in the

B . . T A A W T e
T A R A A T VI S S A A AR
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(Xp,Yp)

Figure 2. Scene radiance and image irradiance in the pinhole approximation: the
image irradiance at the point (r;..y,) is given by the scene radiance at the point
(a,b) on the surface in the direction of the line connecting the two points and
passing through the pinhole Py .
case of pinhole camera approximation, that is assuming that the camera has
an infinitesimally small aperture. the image irradiance at a point (r,.y,.) is
proportional to the scene radiance at the point (a.b) on the surface in the
direction of the pinhole. say (a"..9"). where (r, .y, ). (a.h) and the pinhole

lie on the same line (see Figure 2). Therefore we have

E(r, (a.b).y, (a. b)) L{a.h.o .3 (2.2.1)

MO M
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ng?& where (r,{a.b).y,(a.b)) is the image point that lies on the line connecting
(a.b) to the pinhole. In practice. however. the aperture of any real optical
device is finite and not very small (ultimately to avoid diffraction effects):
thus (2.2.1) does not generally hold. Assuming that the surface is lambertian,
re. L{a.b.a.3) - L(a.b). that there are not losses within the system and
that the angular aperture (on the image side) is small it can be proved (Born

and Wolf. 1959) that

E(r,(a.b).y.(a.b)) = L(a.b)Rcos* ¢ (2.2.2)

where 1 is the solid angle corresponding to the angular aperture and ;2 is
the angle between the principal ray (that is the ray passing through the
center of the aperture) and the optical axis. With the further assumption
that the aperture is much smaller than the distance of the viewed surface.

‘ the Jambertian hypothesis can be relaxed to give (Horn and Sjoberg. 1979)
E(r.(a.b).y,(a.b)} = La.b,o". 3 ) cost - (2.2.3) \

where o' and J'" are the polar coordinates of the direction of the principal
ray. It must be pointed out that (2.2.3) holds if L is continuous with respect
to v and . In what follows we will assume that this is the case. Furthermore,
we will assume that the optical system has been calibrated <o that (2.2.3)
can be rewritten as (2.2.1). Finally. notice that

da db
dt "~ dt

t—
(8%

CoEv, Vel ). (:

where Vi is the gradient with respect to the surface coordinates, since dif-

ferentiating (2.2.1) we have

te
le
!

Vo E - (dr, . dy,) Nl (da.db). (-

&~
-

ALY . e -
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3. Minimal optical low and Motion Field

We describe a general method that allows us to show that the minimal optical
flow and the normal component of the motion field are almost always differ-
ent, or equivalently that (2.1.4) does not hold. We compute the difference
between the normal components of the two fields, assuming first the Lamber-
tian model of reflectance and then a more realistic one for pure translation.
pure rotation and general rigid motion of a generic surface. It turns out
that the two fields are equal only under very special conditions, which can
be explicitly stated. We also show that the difference is smaller where the
image gradient is stronger, justifying the use of feature-based algorithms. Of
course. this argument does not imply that feature-based algorithms should be
used: it says. however, that locations of edges (meant here as sharp changes

in intensity) contain most of the correct information.

3.1. Computing the Minimal Optical Flow

Consider a rigid surface S moving in space from (2.2.1). The image irradiance
E at the time t at the point (r,.y,.) is equal to the scene radiance L at the
point (a.b) on 5. i.e. E(r,.y,.t) L(u.b). The image irradiance at the
time ! - At is given by the scene radiance of the surface at the time ¢ - A{.
As shown in Figure 3. the point! on & that radiates toward (r,.y,) at the
time t - At is the point (¢  Aa.b  Ab).1 The normal N to S at the time

t « At at the point (¢ Aah  Ab). N/ yla dah  Ab).will be

N; ala Nach  Ab) Ny(a da.b Ab) - AN (3.1.1)

I We assume that the surface corresponds 1o a moving convex body 1o avoid self-
occlusions due to the motion. In fact. the computation that follows holds for

any convex surface patch

A e . " s A e A
" R T Oy SRR o
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S(t)

&(x,,y,)

Figure 3 Computing the minimal optical flow: the point (a,b) on S radiates toward
(r;..g;) at time t. The point (a  Aa b Ab) radiates toward the same point at
timme ¢ - At. The normal Ny is the normal to the S at the point (a.b) and N2 at
{a Aa. b  A\b)

where AN is the first order variation of N due to the motion of 5 during

the time interval Af. Now in the case of translation
AN 0 (3.1.2)
while in case of rotation with angular velocity w

AN w - NAY (3.1.3)

Notice that (3.1.3) can be considered as the expression of AN for any
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kind of motion. Similarly, for each argument A of the scene radiance. we can
write

At.,Ag(a,b) = At(a,b) + AA. (3.1.4)

To compute AA, let us distinguish between arguments of L that are
intrinsic function of the surface coordinates (a, b), such as texture and albedo.
and those that are in fact function of the space coordinates (r.y, z), (such
as the illumination and the point of view) and that are expressed in terms
of (a,b) only for convenience. If A is an intrinsic function of the surface
coordinates, it follows immediately that

AA =0, (3.1.5)
while if A is a function of the space coordinates. from the Taylor expansion
we have

AA - VA -vAL. (3.1.6)
where V is the gradient operator with respect to the space coordinates. Let
us assume that L can be written as a function of i arguments A'.7  1.....m

and of N. Then. taking into account (3.1.3) and (3.1.4). (2.2.1) becomes

E(z,,y,.t - At) - L(A}(a - Aa,b- Ab) + AA' . Ny(a Ada.b Ab) - AN)

(3.1.7)
at time t - At and
E(I]”yl"t) - L(A;(a,b). "\'[((l.b)) (318)
at time t. Therefore, using (3.1.6) and (3.1.7),
dE
o

. 1 . i
Jim_ At(L(A,(a Aab - Ab) + AA*N,(a da.b Ab) - AN)
L(A}(a.6). Ne(a.b)) ), (3.1.9)

where the AA* are computed using (3.1.5) or (3.1.6) according to the kind

of argument. From (3.1.9). the minimal optical flow can be derived casily.

To simplify notation. let us suppress the subscript t from Equation (3.1.9).

s _a

2 -.‘ A
‘.‘ s, "n
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From (3.1.9) we easily get

ok da db 'S L oL
P - - VALYV . e s N
a Vel (dt dt) 2‘, dA, A ON
if p of the A! 1.....m) require the use of (3.1.6) to compute V.4 and

(1
JL oL 3L alL . . . .
aN ()'\ 9N, IN, ) for & V0NN

Therefore. using (2.1.6), (2.1.7). and (2.2.4). we can write

ro. ,
SrY) oL

‘. — i - - l"" '-«."-\. et

v~ Of E‘l 94, VA - PES (3.1.10)
1 -

Thus, the normal components of the two fields are different if the surface
undergoes a motion with a rotational component. or the reflectance function

contains arguments depending on space coordinates.

Let us consider now some interesting examples in detail.

3.2. Translation of a Lambertian Surface

Consider a lambertian surface §. The scene radiance due to S will be
L. pI-N (3.2.1)

where pis the albedo of S, 1 the unit vector in the direction of the illumina-
tion and N is the unit normal to the surface. Let us compute the difference
(3.1.10) between the normal components of the optical flow and of the mo-
tion field corresponding to a translation of 5 in space with velocity v under
uniform fixed WMumination. Substituting (3.2.1) in (3.1.10} and changing the
<ign. we have

v Op. (3.2.2)
since w0 and none of the arguments of L in (3.2.1) depends on space con-
straints (1 s constant). Therefore, the minimal optical flow of a translating

fambertian surface uniformly iNuminated is exactly equal to the motion field.
\ \ {
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: . o
, Remark: in the case of non-uniform illumination the right hand side of {3.2.2) Qvf‘f

contains an extra term due to Al. Using (3.1.6) to compute the components

" of Al (3.1.10) yields

: L Ope (P Ay OLdzy

- G TUP T E oz dt T aydt T Bxat)
A

which can be rewritten

™ 1 dl
'\ \ b - () i - N 3 2 3
:": ‘- f iV;,E{‘pdt | (3.2.3)
h since 31/t = O (the illumination is supposed to be fixed). Let us consider
AN
K now the case of a rotating lambertian surface.

%

»:" » 3.3. Rotation of a Lambertian Surface

ey

Let S be a lambertian sur{ace rotating in space with angular velocity w. Let
I be again uniform. Applying the same argument of the previous section but

taking into account the constraint (3.1.3} for VN, we get

N1 w

v 0p ° — (3.3.1)
In the case of rotation. therefore. even under uniform illumination. the
minimal optical flow and the normal component of the motion field are dif-
ferent. They are equal for any surface only if w and I are parallel. This
corresponds to the case of a surface rotating around an axis parallel to the
direction of uniform illumination. In the case of non-uniform illumination,
an extra term like the one in (3.2.3) must be added to (3.3.1). Remark: it

is worth considering analvtically the example of the rotating sphere of the

previous section. [ue to rotational symimetry we have
N{a Aa,b Ab) - w - N{e Aa.b  AbA!  Nf{a.b) (3.3.2)
a.7’b on the sphere. Furthermore.

Lioale Qah A Li{e Na.b AB) - AT I (a.b). (3.3.3)
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X

@ since in this case the displacement in space. VAL, is equal to the displacement y
on the surface, (Aa, Ab). Therefore. if p is uniform. -

oE

e = 0. 3.3.4) X

ot ( :
The minimal optical flow is then. as expected. equal to zero under any illu- N

4

mination. 4
o
o
' A7
3.4. Translation of a Specular Surface 3
. - : .
Let us consider now a model of reflectance more realistic than the lambertian ,

L]

one. Following Phong (1975; see also Horn and Sjoberg, 1979) we define the

"y
scene radiance as a linear combination of a lambertian and a specular term, <

t.e. s

o

L Ly - Lspec- (3.4.1) ¥

Q The lambertian term is equal to the one used before, while the specular term )
is ,
. sD'R 1

3 : (3.1.2) ;

D .

. . <

where s is the fraction of light reflected by the surface. D fn - x is the »
vector pointing from the focus to the radiating point and ! 1

R T 2(I N)N (3.4.3) "

»

is the unit vector in the direction of the perfect specular reflection. Let us A
X

assumne that s is not a function of the direction of the incident light and that -
- . g~ . . .‘

it is constant on the surface. The specular term is thus proportional to the o

LY

U

cosine of the angle between the direction of specular reflection and the line '

of sight. ]

-

Since we are computing derivatives and L is a lincar combination of "

»

'}.’,‘;‘ L and L. we can compute separately the contributions to the min- Y
e » .

imal optical low due to the lambertian and the specular term. adding the
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‘ results afterward. Therefore, we only need to compute now the specular one. RO
Let us consider, first, the case of pure translation of a surface S radiating ,
F)
accordingly to (3.4.2) and let us call S a specular surface. If S is translating 4
with velocity v and I is uniform, substituting (3.4.2) into (3.1.10) and taking '
into account the constraint (3.1.2), we have A
>
2 X
s (D*v-R - (D-v)(D-R)) 5
vy, Op = -7 -——-— = (3.4.4) .
D3 lV E|
since from (3.1.6) N
t
. AD _9Ddz 0Ddy 0Dd: dD _dx ) !
lim —— = ——— 4+ — -5 4 - — = — = — =V, (3.4.5) b,
At At 9z dt dy dt dz dt dt dt 1
Using again the two fields we get a well known vector identity: iy
Y.
2
s (v-D)-(R- D) AR
- Op - 3.4.6
v. - OF - <, E (3.1.6) 2 7
Thus. in the case of translation of a specular surface, the minimal optical E_
\-
flow and the normal component of the motion field are always different. p
Remark: let us consider the case of orthographic projection. When f -+ oc, :
\.
(3.4.6) becomes .\;
v, - Of = 0. ™
>

since when f -» oc, D -+ oc. Therefore. in the othographic limit. the

minimal optical flow of a translating specular surface is equal to the normal

2 rr g

component of the 2-D motion field.

-

o8

3.5. Rotation of a Specular Surface

RIS 5 N

Consider now the same specular surface S rotating in space with angular

velocity w. Then. substituting (3.4.2) into (3.1.10) and taking into account R

A
"
LERAT I

the constraint (3.1.3). we have

R W

TSIt 'r Ty _'.-_‘._r'.{'.',‘..'_;\‘_:.‘_-.__--

'-*w "{"V' '- » -n"f'f.f.:f‘h"),,'l\f '.'.'_. . e . ."'. Te e W Te Jw N \ . ‘\\
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17 A
v. -0p = — > (20*(1-N)(D-w - N) - (D-N)(Iw + N)) -
}VF’Eij” ;.
(W -x)-D)-(R-D)- 5
o
((w>x.) ~D)-(R> D)), (3.5.1) .:'
5]
since v w - x and x,, gives the location of the axis of rotation. Now 1y,
(3.5.1) gives '_
¢
4
0k - - S _(9p%(1. . 2p. .w > N)- :
v_ - O0f - rV,,ED3<2D (I-N)(D-w > N) + 2D%(D - N}{(I-w » N) :
+D*((wxx)-R) - (D -R)Y(D-w ~x) +2D*((w » x.) » D) - (R x D)) ‘
This expression can be simplified in the following way: since D = fn-+x, N
%
s . o N
Q v Op ©E D:,'(zf[) (I-N)(n-w -~ N) - 2D*(1-N)(x-w - N)-~ Y
2D*(D -N)(I-w) - 2D*((w + x.,) - D)- %‘
\J
(R - D)). N
N
that can be rearranged to give e,
:
.J'
N -'
v 0 S o f(n W) (2D*(1-NJN - (D R)x) -
SR e /(0 @) (2D NN - (D R)x) “‘
“D*I - w)-(2(D-N)N  x} - 2D*(w - x.) - D) - (R - D)). )
but x fn D: therefore, :
s , p
-0 - =5 . (2fD*(I1 - N)N - f(D-R)D) - -
V.0 v,,ED~<‘" w) - (2fD*(1-N)N - /(D -R)D) ;
(1 w)-(2D*(D-N)N  D?*D - fD*n) - 2D*((w - x ) - D)-(R - D)). >
h W
:'g' That is,
p

---------------
---------------------------
.................

S' w ..' "' - ™ ‘.' ..' .' . , . . - . .
A B R B T N N T R R S A A AL RS AT e
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A I 2

-

v, - 0p = ’_v_;:jﬁi’g((“ + w) - (2fD*(1-N)N - f(D-R)D)- a
QY el

+(Ixw)- (- D*D - 2(D-N)N) - fD*n) - 2D*((w - x.) D) -(R - D)). ;

Since
we have

B PR »w) (2fD*(1-N)N - f(D-R)D - fDI)-
Vo0 g pe( @) (DM NN - (D -R)D - /D)

+Ixw)-(~D¥D 2(D-N)N))+

LR W B g% A8

"

+2D*((w - x.) - D) (R - D)).

butI - 2(I-N)N - R, and so -

®
e

v Op D1 w)- (D 2(D-N)N)

D? ‘V,.E' (.
fin-w)- (D (D-R))-2D0*(w x) D) (R:-D)). (352

A

The minimal optical flow. therefore. is equal to the motion field for any

specular surface only when 1. w and n are parallel.

PN

Remark: let us consider. aga‘n. the orthographic limit. Taking into account

"

that as f ~x. D - xand D DD - n.(3.5.2) becomes
2s
r Oy o (m-Njw  I-Nj) (I N)lw - n-N)) (3.5.3)
T,k

Therefore. even under othographic limit. the two fields are different.

RN

3.6. General Case

AN YN,

Let us consider. now. the general case. We will assume (3.4.1) as scene .
’ .
e,

radiance of a curface 5 undergoing a given rigid motion (composition of a

E ™ VY N N "~ N e T e T I UL I
:;!1,._ Ny 'o.l‘q e 0 WS v \J‘ -“\ " \5.:',".!‘\ \"u --‘ ".’A\ . \.'.\.-.\_. R
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% rotation and a translation) in space. Adding together (3.3.1). (3.4.6) and
(3.5.2). we obtain the difference between the motion field and the minimal

optical flow for a surface in the general case under uniform illumination. 1.e.:

pPN-1.-w s (v D)-(R-D)

£ DR v,
D

S8

D YLK
fn-w) (D (D R)) 20w - x.) -D)-(R-D)}. (36.1)

(D*(1 - w) (D 2(D-N)N)

The right-hand side of {3.6.1) is generally different from zero. In fact.
there are no general conditions under which it is identically equal to zero.

Notice. however. that if = and v are bounded

lin T, Op. - 0. 3.6.2
t‘ T,,I{: ‘-m ‘ d ( )

Equation 3.6.2 shows that the points in the image where the gradient is
stronger are the points where the minimal optical flow is closer to the motion
field. These points are characterized by sharp changes in intensity - edges
-. that usually correspond to important physical events on surfaces. such
as boundaries. orientation discontinuities and especially surface markings.
Thus. to solve problems such as structure from motion. or the recovery of
the 3-D velocity field. which require an accurate estimate of the 2-1) motion
field. edge-based algorithms seem more suitable than algorithms based on
spatial and temporal derivatives of the image brightness. As a consequence.
in order to obtain a precise reconstruction of the 2-1 motion field. algorithmes
based on the solution of the correspondence problemn among edges may be
u~ed. Notice that matehing can be best performed between frames that are

A cdosely spaced in time whercas the structure from motion computation s

best performed between widely <paced frames. The whole argument agroes

A s s _a_a
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with the fact that, as intuitively expected, the minimal optical flow and the W
motion field at image features corresponding to precise locations on the 3-D
surfaces coincide. It must be pointed out that in this analysis we have not '
considered shadows and self-shadow effects. They usually give rise to edges
in the image that do not correspond to features in the scene. Furthermore.
the Phong model of reflectance does not include sharp intensity changes due .
to specularities. 4
o
4. Qualitative Properties of the Minimal optical flow A
>
Traditionally, the optical flow has been considered as the first step for recov- ,-
-3
ering 3-D structure and 3-D motion. In this chapter we suggest a different AL "
use of the minimal optical flow. We argue that qualitative properties of the I
L'
2-D motion field give useful information about the 3-D velocity and the 3-D e
o
structure of surfaces and that these qualitative properties can be usefully N
inferred from the obtainable minimal optical low. As an example of this ~
approach. we introduce the qualitative properties associated with 2-D dy- -
namical systems and show how to process minimal optical flow and motion ,'
field for making them equivalent to flows of dynamical systems on the plane. B
=
We then suggest. from properties of structural stability of dynamical sys- o
tems. that the minimal optical flow may be equivalent to the motion field in \
N
A
terms of qualitative properties. .
)
4.1. What is the minimal optical flow for? ot
N
In the previous <ection we have shown that the minimal optical low and .-‘_‘_‘.-"‘. :'-
the motion field are different almost evervwhere.  As a consequence, the R
R
e
ks

DN L o

> A e N M WY e AT I AT ST (R ACI N -,--J-y_y*,r;..-.-_.'.r P
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minimal optical flow cannot be used to solve problenis «uch as <tructure
from motion and recovery of the 3-D velocity field. whose solutions rely on
precise reconstruction of the 2-1) motion field. We have also proved that the
two fields are very similar at locations where the image gradient is strong.
This led to the suggestion that feature-based algorithms may provide more

reliable solutions to those problems.

Here we argue that the minimal optical flow. as a field defined alimo«t
everywhere, can be used to retrieve meaningful information about the 3-1)
velocity field and the 3-D structure of the scene. In particular. we consider
qualitative properties of the 2-D motion fields which can be connected to
significative events in the scene. Such properties are likely to be found in
the corresponding minimal optical flows as well. As an example. consider an
object moving toward the image plane. This kind of motion generates a focus
of expansion in the 2-1) motion field. The presence of a focus of expansion
on the image plane. therefore. may be related to an object moving toward
the plane itself. As we have seen, however, the information avallable is not
the motion field. nor its normal component. but the minimal optical flow (or
its nomal component}. f the difference between the two fields i< <ufliciently
small. we expect to find 2 focus of expansion also in the minimal optical flow.
In the next <ections we will <how how the 2-1) motion field and the optical flow
can be considered vector helds tangent (o flows of some dynamical syvetene
becomes then possible to establish a suggestive analogy between the theory
of structural stability of dyvnamical systems and the qualitative description
of the two fields. A focus of expansion of a dyvnamical svstem. for example,
i~ a ~tahle property for small perturbations of the svstem: this means that
given a veetor field with a focus of expansion, every field obtained from it In

means of a ~sufliciently siall perturbation will also show a focus of expansion,

P Y W w ox)

Ca

(5
¢

-

h ‘\.‘.‘\-5‘.\59

O AL

s

‘e Y g e vy
- «

(O B Y
Gt

g

.
LS .
)

~r

S

."-{l"((r

A

.

r
A A




a8 et 8 5.0 mab Bl it Ba? 8% Het 6.t $a% £2 2t 2% 82" #2000 #aY 4.0 0,7 !)'(l'l."'.’.‘ -t‘l'l"l'

22

4.2. Smoothing the Optical Flow and the Motion Field

In order to establish a connection with the theorv of stability of dynamical
systems, we must insure that the optical flow and the motion field have an
appropriate degree of smoothness. This is not always the case. because of
discontinuities arising at object boundaries or to noise affecting the optical
flow data. We suggest to use a filtering step to smooth the field. It is
worthwhile noticing that a filtering step on the normal component of a dense

motion field is a (regularization) method to recover the whole 2-D motion

field. *

4.3. Qualitative Descriptions of Dynamical Systems

For a rigorous and thorough review on dynamical systems see Hirsch and
Smale (1974). Here. for the sake of completeness. we sumrmarize the main

definitions and results.

A dynamical systemis a C'' map o: R - 4 - A, where A is an open
set of an Fuclidean space and writing o(t.r)  o¢(r). the map o,: 4 - A
satisfies:

(a) o : A - Ais the identity:
(b) the composition o¢(o.(r)) or.. forecach t.s. K.

A dynamical systemn ¢, on A gives rise to a differential equation on 1.
that is a vector field y: A - E defined as followns:

d
d’o,(f) ’ E (1.3.1)

y(r)

“This “smoothed™ 2-1) motion field may not be the same recovered using standard
algorithms. but its qualitative properties are likely to be preserved. The analogy
we are about to present. indeed. will support this argument (and the equivalence

between qualitative properties of the 2-D motion field and the optical flow ac

well)

ia'tagtl ' e
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ﬂ%. Thus, for every r. y(x) is the tangent vector to the curve f - o, (r) at f 0.

Equation (4.3.1) can be rewritten in a more conventional way as

dr
dt

- y(x). (1.3.2)
Under suitable conditions on y(r). there exists a dynamical system associ-
ated to (4.3.2) as a differential equation. Namely. a sufticient condition on
y(r) is that it is a C'! function defined on an open subset of R, Intuitively a
dynamical system can be thought as a one-parameter family of transforma-
tion ¢;: A - A describing the motion of the points in A4 as the titne passes.

The trajectories of the points are given by the solution curves to equation

(4.3.2). Since equation (4.3.2) is autonomous (that is, the right-hand side

does not depend explicitly on time). if y(z") - 0. then r - 1" is a solution
to it. Without loss of generality, we can assume that r' coincides with the
origin. For obvious reasons, we will restrict our attention to planar systems.
" (i.e. in what follows. A will be an open set in R*). Solutions like r' are
called equilibrium points or equilibria. In the case of linear systems. useful
qualitative information about the behaviour of the solution to (4.2.2) can be
obtained from the cigenvalues of the matrix M of the coeflicients of the differ-
ential equation. The restriction to planar syvstems reduces the classification

to four fundamental cases:

I M has real eigenvalues of opposite signs. In this case the origin is called
a saddle: the equilibrium is unstable {an equilibrium i~ stable if am
nearby solutions to it stavs nearby for all the future time. 1t is unstable

otherwise).

Il : The eigenvalues have negative real parts. The origin is called a sivk and

it is stable equilibrium. The main property of a sink is that

h ]

o

i (1) 0

!

e
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Figure 4. Vector field tangent to a planar sink: all the solutions curves are pointing

toward the origin.

. Qualitatively. the phase portrait of the solutions. that is. the family of the
solutions curves as a subset of B?, Jooks Jike Figure 1. where only some N
tangent vectors of some solutions curves have been drawn. Ninks can be
classified depending on further characte, stics of the eigenvalues. A focus
(Figure 1). for example. represents the case of coincident eigenvalues
(M is supposed to be diagonalizable): a node. the case of different real
eigenvalue: a spiral. the case of complex conjugates eigenvalues. \ sinh-

increasing rotational component corresponds to ecach different case.

111 . The eigenvalues have positive real parts. The origin i~ called a souree.

The main property of a source is that

hm o r(t) X
y [N
1
and
hm o r{t) 0.
. D
A source can be considered as the dual case of a «ink: the phase portran e

of a source and of the correponding sink are the same except that for the
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direction of the motion which must be reversed. Reversing the arrows
in Figure 4. for example. obtain the phase portrait of a systemn with
coincident real positive eigenvalues. A source is obviously an unstable

equilibrium.

The eigenvalues are pure imaginary. The origin is called a center. All
the solutions are periodic with the same period. A center is a stable
equilibrivum. For a reason that will be made clear soon. this last case is
of little practical interest. since even a small pe: curbation of the field will
make the orbits spiral inward to (or outward from) the origin. changing
the qualitative properties of the solution’s curves. In other words. a

center is not a structurally stable property.

The crucial point is that this classification is erhaustire. Fvery solution
to Lquation (4.3.2) (in the linear case) looks like a caddle. a ~ink. a ~source. or
a center. The came classification holds for the non-finear ca~e with respect 1o
the eigenvalues of the derivative of the right-hand side of {15200 considered
as a lincar operator. This is equivalent to consider a linear approximation
of the sv<tem in the neighbors of the origin. However non-lincar <y <ten-
are interesting in theirselll since they can show also a different qualivative
behavior. A non-linear system. indeed. can have in addition fimat cgele .
Intuitively. a Tt exvele s a closed orbit towards which other ~olution~’

curves spiral with the same asy mptotic period. Delining o c-lomdt et L (.

as I (r) {a A such that 1« o with () - ol and <imitarhy an
o-lomat set Lo (ryas Lo(r) {h A such that 4, -~ with oif,) - bl
a himit evele is a closed orbit - <uch that - I_{r)or - [ tr) for ~ome
r =~ Under somewhat more restrictive conditions. a it cvele can be
-ffgj pertodie attractor (for a rigorous definition of 1t see Hirseh and Smale 1971,
Intuitively, a periodic attractor is a limit evele ~uch that nearby trajectories
U T B O T N T Tt .
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not only have the same asymptotic period but also are in phase. Saddles,
sinks, sources and periodic attractors are very important for a qualitative
description of planar systems. Indeed it can be shown that such properties
are structurally stable, that is they persist after a perturbation of the right-
hand side of (4.3.2). As far as planar systems are concerned they also fully
characterize limit sets. By means of the Poincaré-Bendixon theorem it can
be shown that compact limit sets other than limit cycles are saddles. or sinks.

or sources or trajectories joining them.

4.4. Equilibria and their Interpretations

In the definition of dynamical system the right-hand side of Equation (4.3.2)
can be interpretated as a vector field tangent to the family of curves in the
plane, solutions to (4.3.2) itself. 1t is straightforward to see that both the
smoothed optical flow and motion field (i.e. after the filtering operation) can
be considered as istances of such a vector field *. Indeed, it is sufficient to
insure that both the fields are continuous with continuous first derivatives.
The classification of the solutions can now be interpreted in terms of char-
acteristic points of the 2-D motion field. A source, for example. corresponds
to a focus of expansion of the field. The structural stability of the source.
in turn, says that a focus of expansion persists even if the field is perturbed.
From this perspective a focus of expansion is expected to be detectable in
a 2-D motion field reconstructed with different algorithms and in the opti-

cal flow as well. when they can be considered as perturbed examples of the

®We stress the fact that the analogy with the dynamical system is between phase
portraits of dynamical systems and motion flows. The parameter ¢ in the defini-
tion of dynamical system is not the physical time. We considered motion flows,
such as the 2-D motion field or the optical flow at a fixed time. comoaring them
with the vector field tangent to the phase portrait of some system: we are not

interested in the physical meaning of the underlyving dynamical system.
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‘e@ “true” 2-D motion tield.

4.5. Discussion

i
If sur point of view is correct. the only critical property of the optical low is
.
. . - . -
that it have the <are qualitative properties of the 2-D velocity field. Notice 3
that this requirement also satisfies 1wo important uses of the optical flow: ‘
to detect discontinuities and to help long-range mateching of the stereo tvpe.
needed for the computation of structure-from-motion. Quantitative equiva- )
)
lence. which is impossible in general. is in any case irrelevant for this use of N
the optical flow. As a consequence. many different “optical flows™ moy be ;
defined. Fquation (2.1.6) does not have any priviliged role: other definitions .
could be preferred on the basis of criteria such as computability (from image y
)
“ data) or ease of implementation (for given hardware constraints). L
This point of view has clear implications for biological visual svstems: -
movement detecting cell- {sav. in the retina) do not have to compute the -
N .. . . . . . . S
specific minimal optical How defined by equation (2.1.6): other. possibly
[ 4
siinpler. estimates of the velocity field that preserve s qualitative proper- )
lies are equally good candidates (such as correlation-like algorithms). This ;
-
argument may explain why the models proposed to explain motion dependent y
behaviour in insects (Has<enstein and Reichardt, 19536). motion perception v
-
in humans (Van Santen and Sperling. 19%1) and physiology of cells (Barlow N
. . o- rye. Y 4 - . . ‘.
and Levick, 19652 Torre and Poggio. 197%) are all inplementing computa- v
P
tions quite different from the minnmal optical flow as it is usually defined (see N
-\
equation 2.1.6). In addition all these models do not typically measure ve- ~3
N
locits  not even in the case of uniform translation in a frontoparallel plane. -
.
KNS Fven for simple motions of the fatter type the ontput of models such as the NS
L ' .
correlation models depends on hoth 1he velocity and the spatial structure of ~\
~
A
-
N
>
IN'
. o
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the moving pattern. One is tempted to consider this as a weakness of these -:S::
models compared to the definition of minimal optical flow, Equation 2.1.7.
Our results, however. show that this is not the case: first, the minimal optical
flow is correct only in a very special situation; second, all these models may
have the same qualitative properties of the motion field, which. from our

point of view, is the only critical requirement for a “good” measurement of

motion. The next question is of course whether these biological models are in

5 -

fact “close” enough to the motion field to share the same qualitative proper-
. ties. We do not know the answer yet. We conjecture, however, that they are
indeed usually similar enough to preserve the main qualitative properties of
the motion field. The conjecture is based on results (Poggio and Reichardt.
1973 and Poggio, 1985) showing that most of the biological models proposed
so far can be considered as special instances or approximations of a general
class of nonlinear models (characterized as Volterra systems of the sccond .
b order); and that the minimal optical flow. as defined in equation. is also

approximately a Volterra functional of the second order (Poggio, 1985).

It is important to stress that the approach outlined in the second part

of this paper for classifying the qualitative properties of the optical flow is

aveva's K W& &

only one of the possible methods. While we plan to develop further that
particular approach. others should be explored as well: in particular flows
that do not correspond to dynamical systems on the plane may be better
) suited for capturing important and stable properties of the velocity field
such as motion discontinuities. In this case. the classification of qualitative

, properties should take place without a preliminary smoothing operation.

X In addition to the classification of stable qualitative properties of the
velocity field. much work needs to be done at the level of their interpretation .

in terms of 3-1) structure and 3-1) velocity. Some of the qualitative properties -

- -

MG I\I’ f‘ A oL ot T o .".-"' N Y -“‘".-’..-. LAl O A .I"'-' " T A e A ‘q'. % ‘\'\.' AN ¥
R A Sal . . . 3 » 0 d L) 3 A



TN U O X PO O T TP N T T A N R O R A R —— 0mata"sta et ataratmat San tan s g
DT

X
¥
[ - ’ 0
“.‘

| ‘
29 :
A

¥ of the (smoothed) velocity field have an easy interpretation in those terms: .

an obvious example is again a focus of expansion that 1s usually related
to “crashing” motion. It is likely that many. more subtle relations exist ]
between the qualitative properties of the flow and the underlying 3-1D motion

and structure. For example. preliminary results by Torre et al. (personal )

communication) suggest that the number of focuses in the (smoothed) field

may be characteristic for the rigidity of motion in the visible scene.

Finally. we should mention an obvious extension of the approach de- ‘
scribed in the second part of the paper. We have only considered so far the :
e
velocity field “frozen™ at a given instant of time. The succession of image .
N
frames provides in fact a time-dependent field: the evolution in time of the >
qualitative properties we have described how they are created, disappear N
and transform  should be characterized in qualitative terms. for instance 2
L)
‘ using the language of catastrophe and bifurcation theory. The use of time- &
S g . . .
dependent fields should be practically much more robust. because of the
redundant information available in a sequence of very closely spaced frames ’
. . o . ’
(in time). Our analysis should be extended to gualitative properties that are ’
}
structurally stable not only at a given time but also in the time dependent <
. >
field. 7
. . . P . . d
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4.6. Appendix Al: Perspective and Orthographic Projections

In this section we explain in more detail the geometry of perspective pro-
jection used in the paper. Let n be the unit normal to the projection plane
and f the focal length. In order to obtain the orthographic projection as
the limit of the perspective one for f . oc. the focus cannot be located at
the origin of the system of coordinates. To simplify the geometry without
losing in generality. let the origin lic on the projection plane. The vector
pointing from the focus to a point x  (r.y,z) is now fn + x. To obtain the

expression of the projected point x, notice that from Figure 1 is easy to see

that
fn - x fn - x,
(fn+x)-n J
From that. we have
fn - x
X n
; ff o 7
and finally
f
X X {(x-n)n
! /- - x n( ( ) )
or
J
X, - (n - {x - n).
7 f X -n ( )
The orthographic projection equation can be easily obtained for f + oc. 1.¢.
J

X, rt fliﬁm X, (m - (x-m)) (n-(x-n)).

f-x:n
Combining the last two equations. we obtain the general relationship

between perspective and orthographic projection. that is

X / X
) f-
! f xn

.
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